US008583763B1

a2z United States Patent (10) Patent No.: US 8,583,763 B1

Kim et al. 45) Date of Patent: Nov. 12,2013
(54) SANDBOXING CONTENT OPTIMIZATION AT (56) References Cited
THE NETWORK EDGE
U.S. PATENT DOCUMENTS
(71) Applicants: Hayes Kim, Northridge, CA (US); 5935207 A * 81999 Logueetal.ccooon...... 709/219
Robert J Peters, Santa Monica, CA 6,026,413 A 2/2000 Challenger et al.
(US); Sergio Leonardo Ruiz, Redondo gg?é{)gg gé lgggg‘s‘ JBaCObSShet ?lll't |
. : ,976, en-Shaul et al.
Beach, CA (US); James Segil, Santa 2003/0065810 Al 4/2003 Ims etal.
Monica, CA (US) 2003/0115346 Al 6/2003 McHenry et al.
2003/0115421 Al 6/2003 McHenry et al.
. . . . 2004/0205162 Al 10/2004 Parikh
(72) Inventors: Hayes Kim, Northridge, CA (US); 2007/0156845 Al 7/2007 Devanneaux et al.
Robert J Peters, Santa Monica, CA 2008/0228920 Al 9/2008 Souders et al.
(US); Sergio Leonardo Ruiz, Redondo 2011/0252160 Al* 10/2011 WU ooooovionriiiriee. 709/246
Beach, CA (US); James Segil, Santa 2011/0276623 Al* 11/2011 Girbalc..ccooovriinnn. 709/203
Monica, CA (US) * cited by examiner
.) . Primary Examiner — Scott Christensen
(73) Assignee: gigg[ﬁzs)t Networks, Inc., Santa Monica, (74) Attorney, Agent, or Firm — Los Angeles Patent Group;
Arman Katiraei
(*) Notice: Subject to any disclaimer, the term of this (7 . ABSTRACT
patent is extended or adjusted under 35 Some embodiments provide systems and methods for sand-
U.S.C. 154(b) by 0 days. boxing content optimization to occur entirely within a net-
work edge or PoP of a CDN. Some embodiments pass a first
request for a first URL to a first back-end at the network edge
(21) Appl. No.: 13/623,051 that is configured to cache an optimized instance of the par-
ticular object. When the optimized instance of the particular
(22) Filed: Sep. 19, 2012 pbject is not cached at the ﬁrst.back.-er.ld, a second request is
issued for a second URL identifying a non-optimized
instance of the particular object. The second request resolves
(51) Int.CL internally within the network edge to a second back-end that
GOG6F 15/173 (2006.01) is configured to cache the non-optimized object. The non-
(52) U.S.CL optimized object from the second back-end is optimized and
USPC oo 709/218 Dpassed to the first back-end. The first back-end caches the
(58) Field of Classification Search optimized instance of the non-optimized object and serves the
None optimized instance to a requesting end user.

See application file for complete search history.

-
l/

Receive end user requesi Lor base HTML
page

0

310

12 Claims, 11 Drawing Sheets

Request base HTML page
from proper urigin

325
Retricve base HIML page

[Optinize base HTML page |

Ron-optimizS
copy of embedded.
bject in cachc?

Pass optimized base HTML page W
requesting end user

Receive request for aptimized embedded
ubject

360

Optimized
cmbedded ohjest in
cache?

Yes

cache

Pass oprmized erbedded ohject o the
requesting enl user

End

}/

Retrieve optinized embedded object fron I/

Prefeteh non-
optimized erbedded
object

355

375

380

|4_

340

Cachie prefetched nom-uptmized
cmbedded object upon arrival

365
Rebicee non-optinized copy of
reguested object

Optimize non-optimized copy of
requested object

U.S. Patent Nov. 12,2013 Sheet 1 of 11 US 8,583,763 B1

Origin

Server

(CDN
Customer)

Traffic
Mngr

CDN
Administrative
Server
130

Origin
Server
(CDN
Customer)

Figure 1

US 8,583,763 B1

Sheet 2 of 11

Nov. 12,2013

U.S. Patent

uguo

7 9IngI]

01¢
uely
goneziundQ

;

1010011}

(1744

woedy pug-uoig

0£e

Aemaien)

uady pug-yoeg

101031(]

U.S. Patent Nov. 12, 2013

Start

(

Receive end user request for base HTML
page

Basc

Sheet 3 of 11 US 8,583,763 B1

100

) &

310

/

320
~

e > [P
in cache? P i £
Yes 325
330 ™ Retrieve base HTML page
/
Optimize base HTML page |< |
335 340
e
Non-optimized Prefetch non-
copy of embedded optimized embedded
bject in cache? object
350 345
~. s
Pass optimized base HTML page to Cache prefetched non-optimized
requesting end user embedded object upon arrival
¢ 355

Receive request for optimized embedded
object

360

Optimized No

Retrieve non-optimized copy of

embedded object in
cache?

Retrieve optimized embedded object from
cache

Y

\

Pass optimized embedded object to the
requesting end user

v

End

requested object

v

Optimize non-optimized copy of
requested object

375

380

Figure 3

US 8,583,763 B1

Sheet 4 of 11

Nov. 12,2013

$ 9an31

51020 PapPaqIUa 10 ST UMY
gy a8ed TN LI 9seq paziwnd() (S

§192{qo pappaquu2 JOJ ST UeNlImal
uiim 95ed JINLH oseq pezruind((%%

a8ed TNLLH
oseq aziwnd() $7F

| o] 230d TIALLH 9S8 OLT

aded TN LH 9sed :S0F e

]l
o S a8ed TIALLH oseq 1sonboy [GO%

ased TINLH
oseq 1sonboy [k

a8ed TINILH immaﬁ a3ed TN.LH aseq
jsanbay] (0CF € ,

1sonbay] [THY

juady pug-yoey
Aynuept 01 TYN UYSEH 0%

o8ed
€ Twaimesq f
3 jsonbay [$EF
— Juady 0tv STy (%%
Oty uonezrumdo juady sy 1980
uSHO ol puz-yoeg | pug-juoi] | pugf

U.S. Patent

US 8,583,763 B1

Sheet 5 of 11

Nov. 12,2013

U.S. Patent

S 2INs1Y

19fqo
pappoquio
6 pozimdo |
100[go poppaquua jsenbayy
poziwmndo ‘08¢
-Uou ayoe)) 15/ ¢
123lqo
poppequid
4 poziwmdo (e
-uoN 9.¢
walqo STHN
POPPOGEID TOPLIMOT M
e pozundo | oSed TNIH
-Uuou 10§ a8rq $SA00I]
jsonbay] 'ToC
A|_ 12lqo peppaquia paziudo-uou ioj 3senbay [joc
102[qo pappeqid 10§ Juagy
pug-yoey @ Auepy <CS
H
ST USRLIMAI 1M oFed
TALLH 9seq paziamd(95S g
103[qo pappoqud Jo Adod
paznupdo-uou jsenboy [$HS »
STHM UMM (3Im
oFed 111 oseq pozrundo 075 [~
N— 01¢ [S42 0z Sy (52
omm 14 juady Wiy wady IV I8N
RO pug-ord uopeziumdQ | pud-yoed .| pPUF-uoLy 1 pud

US 8,583,763 B1

Sheet 6 of 11

Nov. 12,2013

9 3an3I

105[qo pappaquua
pezjumd(79 ’
120[go poppoquid
pozindo oyde) (079
100fqo poppoguid
pazrund() :$59 ’
102[go pappaquid pazimdo
-uou azramd() ;099
| 199{qo pappequua
pazrundo-uopN $50
€ 193[qo pappaquia pazrundo-uou 35anboy (539
|
100[qo poppoquuo pozrundo-uou 1sonboy [THH
12[qo poppaquie
E— ; .
pazrundo 1sonbay [HF9 « 100fqo poppoqud | walgo
pazundo 1sonboy TEH PappPegIud
ha pezmundo [
1sonboy 59

01¢ 079 <19 019 0Ty
U5V 105y w8y By 380}
pug-yoeq .7 vonezimnd(y ¢ pug-yord ¢ pug-uord ¢ pug

U.S. Patent

U.S. Patent Nov. 12,2013 Sheet 7 of 11 US 8,583,763 B1

: '
: ! 710 V
t
: P Optimization — E
E Agent '
: 762 126 /7 7l E
H 759 !
4 Front-End '
‘ Agent 774 '
L
720 '
E — Y 2 Back-End 68 !
H Agent) 1
+
' 756 123 E
t
' | 753 :
: 713 '
H L]
: 765 i L
: '
2 & Py > Back-End E
: 768 = Agent :
[}
: > :
L]
E Front-End H
4 Agent '
D © 730 5
' Optimization '
' n '
' C5> Agem !
! 736 :
t — '
: l :
‘ '
:]
: 1 '
‘ :
5 Back-End !
H Agent) '
: 743 N~ '
' Front-End !
: Agent '
‘ 740 ;
= i \ NO)
‘ Optimization '
: Q Agent 716 !
H [}
: - 746 '
s l '
:)
ba- 7 ---]

US 8,583,763 B1

Sheet 8 of 11

Nov. 12,2013

U.S. Patent

widuO

Q 2an31

wafqo paziumdQ 978

192(go

pazrundo payoro AJnuapy (098

€4 123{qo paziumdo jsanboy (T

0

uady
uvonezundQ

0c8
Uy pug-yory

109({go pozmumdo
Rl sonbay 9F8

<18
JUeBY pug-1u0L{

498} puy

US 8,583,763 B1

Sheet 9 of 11

Nov. 12,2013

U.S. Patent

U.S. Patent Nov. 12,2013 Sheet 10 of 11 US 8,583,763 B1

gt wingk

B nseni G

i B abe Soogle Analytics Asvn

& 3 Revowe Qunie

Betmin Comrents

& B o Comrern

U Move (35w Head

S Bt Sale Mmibans

F Wit Sivls Anvitank it gl

A A A A A A A A

Hemen U3 lmpoms 2 Setex

B oo U35 Shovn Soripl

Figure 10

US 8,583,763 B1

Sheet 11 of 11

Nov. 12,2013

U.S. Patent

[T .03

0cll
N
SN _ 0111 0T11
N _ N\ N
IIOMIDN $291A49(] 10duy 108820044 NOY
N
SOl
saomaag mdino AJOUISN UWIOISAG 25e103
| < 4>
_ SLIT
AN eIl
SELL

0011

US 8,583,763 B1

1
SANDBOXING CONTENT OPTIMIZATION AT
THE NETWORK EDGE

TECHNICAL FIELD

The present invention relates to content caching and con-
tent delivery networks.

BACKGROUND ART

Content delivery networks (CDN5s) have greatly improved
the transfer of content across data networks such as the Inter-
net. One way that a CDN improves the transfer of content is
to reduce the distance that content travels in order to reach a
destination. To do so, the CDN operator strategically locates
CDN caching servers also referred to as CDN edge servers, at
various points-of-presence (PoPs) that are geographically
proximate to large numbers of end users. CDN customers are
content providers that offload their content to the CDN cach-
ing servers. The CDN caching servers cache the offloaded
content and deliver the content on behalf of the CDN custom-
ers or content providers. More particularly, from the geo-
graphically proximate locations of the CDN caching servers
to the end users, the CDN caching servers serve the cached
content to end users in a manner that is more efficient than if
the content providers were to serve the content themselves.
The CDN uses a traffic management system to route a request
for cached content to the CDN caching server that can opti-
mally deliver the requested content to the requesting end user.
As used hereafter, optimal delivery of content refers to the
most efficient available means by which content can be deliv-
ered from a CDN caching server to an end user machine over
a data network.

Determination of the optimal CDN caching server may be
based on geographic proximity to the requesting end user as
well as other factors such as latency, jitter, packet loss, load,
capacity, and responsiveness of the CDN caching servers. The
optimal CDN caching server delivers the requested content to
the requesting end user in a manner that is more efficient than
when origin servers of the content provider (i.e., CDN cus-
tomer) deliver the requested content or when other CDN
caching servers at different PoPs of the CDN deliver the
content. For example, a CDN operator may deploy CDN
caching servers to form PoPs in Los Angeles, Dallas, and
New York. These CDN caching servers may cache content
that is published by a particular content provider customer
that has an origin server in Miami. When a requesting end
user in San Francisco submits a request for the content of the
particular content provider customer, the CDN will deliver
the content from a CDN caching server at the Los Angeles
PoP on behalf of the particular content provider customer, as
opposed to the much greater distance that would be required
when delivering the content from the particular content pro-
vider customer’s origin server in Miami. In this manner, the
CDN reduces the latency, jitter, and amount of buffering that
is experienced by the requesting end user.

The foregoing presents a rudimentary and basic overview
of CDNs as they existed in their initial incarnations. Subse-
quent incarnations have introduced new features and
enhancements that further accelerate the delivery of content.
For example, many CDNs now offer various levels of
dynamic content caching, prefetching, and application execu-
tion at the edge.

As the evolutionary cycle continues, there remains an ever-
present need to improve the content delivery capabilities of a
CDN. This need translates to identifying new optimizations
as well as improving the current means by which content is

20

25

30

35

40

45

50

55

60

65

2

delivered to end users. This need further translates into
improving the content delivery capabilities of the CDN with-
out scaling the resources of the CDN. In other words, there is
aneed to improve how the CDN can improve content delivery
based on its existing resources. To this end, there is a need to
provide an architecture to automatically optimize the content
of different CDN customers before delivering that content to
end user. Moreover, there is need to maximize the content
delivery performance gains that can be realized from content
optimization by minimizing the processing and network
access needed in order to perform the optimizations.

SUMMARY OF THE INVENTION

It is an objective of the embodiments described herein to
improve the content delivery capabilities of a CDN by intel-
ligently optimizing content at the network edge prior to dis-
seminating that content to an end user requesting the content.
To do so, it is objective to leverage the distributed architecture
and, more specifically, the distributed cache so as to sandbox
content optimization entirely at the network edge. Meeting
these objectives reduces the processing overhead and net-
work access times required to dynamically optimize content
of different CDN content provider customers, thereby
improving the content delivery capabilities of the CDN. Fur-
thermore, by optimizing the content at the network edge, the
CDN provides an optimization solution that frees CDN con-
tent provider customers from having to pre-optimize or per-
form content optimization locally before offloading the deliv-
ery duties of the content to the CDN. As a result, CDN
customers can focus on the creation of content and rely on the
CDN to ensure the optimized delivery of that content.

To achieve these and other objectives, some embodiments
implement architectural enhancements to various caching
server or edge servers of a CDN. These enhancements enable
sandboxed content optimization at the network edge irrespec-
tive of the customer content being optimized. This minimizes
access outside the network edge and, more specifically, mini-
mizes access back to an origin or other location within an
external network when performing the various optimizations.
Consequently, content that is being optimized is present at the
network edge when needed.

In some embodiments, the enhancements include modify-
ing a CDN edge server to include an optimization agent, a
front-end agent, and a back-end agent. The optimization
agent automatically identifies available optimizations that
can be made to requested content and the optimization agent
applies the best available optimization(s) to the requested
content. In some embodiments, the optimization agent
executes the “mod_pagespeed” Apache module to perform
the desired optimizations.

Delivering the optimized content produced by the optimi-
zation agent instead of the non-optimized content originally
offloaded to the CDN by the CDN customers provides a first
level of CDN performance gains. These first level of CDN
performance gains are realized as a result of the optimized
content requiring less bandwidth to transfer than the non-
optimized content. Consequently, the CDN is able to deliver
the optimized content to an end user faster than delivering the
same content when it is not optimized.

The enhanced architecture also provides a second level of
CDN performance gains based on the combined operation of
the optimization agent with the front-end agent and the back-
end agent. These second level of CDN performance gains are
realized by way of sandboxing the content optimization to
occur at the network edge. Specifically, the enhanced archi-
tecture can be leveraged to cache content that is optimized by

US 8,583,763 B1

3

the optimization at the network edge. In so doing, the opti-
mized content can be served without having to reperform the
optimizations the next time the content is requested. Also, the
enhanced architecture can be leveraged to cache the non-
optimized content that is needed to produce the desired opti-
mizations at the network edge. This allows the CDN edge
servers and more specifically, the optimization agents, to
optimize content on-the-fly without the latency and overhead
associated with retrieving the non-optimized content from
outside the network edge.

The front-end agent operates to forward requests to the
appropriate back-end agent. The back-end agent maintains a
cache for retaining the non-optimized content of different
content providers at the network edge. The back-end agent
also maintains the cache for retaining content that the opti-
mization agent has previously optimized.

The optimization agent leverages the front-end agents and
the back-end agents at a network edge (i.e., a specific CDN
PoP) to determine if requested content has already been opti-
mized, cached, and can be served from cache. When the
requested content has not already been optimized, the opti-
mization agent leverages the front-end agents and the back-
end agents to retrieve a copy of the non-optimized content
being requested from within the network edge. By retrieving
a copy of the non-optimized content from within the network
edge, the optimization agent avoids the greater latency and
additional overhead for retrieving the non-optimized content
from outside the network edge such as from a CDN custom-
er’s origin server. The architecture thereby facilitates a more
efficient optimization of content, wherein the efficiency gains
result in real-world performance delivery advantages for the
CDN.

In some embodiments, the back-end agents prefetch non-
optimized content. Inthis scenario, a back-end agent retrieves
a base HTML page in response to an end user request for
content. The back-end agent provides the base HTML page to
the end user as well as a local optimization agent. The local
optimization agent identifies the best available optimizations
for that content. Before the requesting end user requests the
embedded objects within the base HTML from the edge
server, the back-end agent prefetches and caches those
objects. When the requests arrive from the end user, the opti-
mization agent can then retrieve the requested objects from
cache instead of a location outside the network edge, perform
the optimizations at the network edge, and serve the opti-
mized content from the network edge.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to achieve a better understanding of the nature of
the present invention, preferred embodiments for systems and
methods for sandboxing content optimization at the network
edge will now be described, by way of example only, with
reference to the accompanying drawings in which:

FIG. 1 presents an exemplary CDN architecture.

FIG. 2 illustrates the architectural enhancements to a CDN
edge server that enables the sandboxed content optimization
in accordance with some embodiments.

FIG. 3 presents a process that illustrates the interworking
between agents in a CDN PoP for the purpose of sandboxing
content optimization at the network edge in accordance with
some embodiments.

FIG. 4 presents an exemplary message flow for initiating
sandboxed content optimization at the network edge by opti-
mizing a base HTML page in accordance with some embodi-
ments.

20

25

30

35

40

45

50

55

60

65

4

FIGS. 5-6 presents a message flow diagram that illustrates
how the distributed CDN architecture and interworking of the
agents enables sandboxing content optimization at the net-
work edge by prefetching and optimizing the prefetched con-
tent in advance of the content being requested in accordance
with some embodiments.

FIG. 7 illustrates leveraging the distributed cache for the
purpose of reusing cached non-optimized content to optimize
the cached content.

FIG. 8 illustrates serving optimized content from cache in
accordance with some embodiments.

FIG. 9 illustrates a first GUI interface for enabling and
disabling content optimization.

FIG. 10 illustrates a second GUI interface for customizing
which optimizations to apply to CDN customer content.

FIG. 11 illustrates a computer system or server with which
some embodiments are implemented.

DETAILED DESCRIPTION

In the following detailed description, numerous details,
examples, and embodiments for systems and methods for
sandboxing content optimization at the network edge are set
forth and described. As one skilled in the art would under-
stand in light of the present description, these systems and
methods are not limited to the embodiments set forth, and
these systems and methods may be practiced without some of
the specific details and examples discussed. Also, reference is
made to the accompanying figures, which illustrate specific
embodiments in which the systems and methods can be prac-
ticed. It is to be understood that other embodiments can be
used and structural changes can be made without departing
from the scope of the embodiments herein described.

To facilitate the discussion, an overview of an exemplary
CDN architecture is presented in FIG. 1. As shown in FIG. 1,
the architecture includes a distributed set of edge servers 110,
traffic management servers 120, and an administrative server
130. The figure also illustrates the interactions that CDN
customers including content providers have with the CDN
and interactions that content consumers or end users have
with the CDN.

Each edge server of the set of edge servers 110 may repre-
sent a single physical machine or a cluster of machines that
serves content on behalf of different content providers to end
users. The cluster of machines may include a server farm for
a geographically proximate set of physically separate
machines or a set of virtual machines that execute over par-
titioned sets of resources of one or more physically separate
machines. The set of edge servers 110 are distributed across
different network edges of the Internet to facilitate the “last
mile” delivery of content. Each cluster of servers at a particu-
lar network edge may represent a point-of-presence (PoP) of
the CDN, wherein an end user is typically routed to the closest
PoP in orderto download content from the CDN with the goal
of minimizing the time needed to deliver the content to the
end user.

The traffic management servers 120 route end users, and
more specifically, end user issued requests for content to one
or more edge servers that can optimally deliver the requested
content back to the end users. Different CDN implementa-
tions utilize different traffic management schemes to achieve
such routing. For the purposes of the discussion that is to
follow, the traffic management scheme performs Anycast
routing to identify a server from the set of servers 110 that can
optimally serve requested content to a particular end user
requesting the content. However, it should be apparent that
other traffic management schemes such as Domain Name

US 8,583,763 B1

5

System (DNS) routing can be used and that the traffic man-
agement servers 120 can include different combinations of
DNS servers, load balancers, and routers performing Anycast
or Border Gateway Protocol (BGP) routing.

The administrative server 130 may include a central server
of'the CDN or a distributed set of interoperating servers that
perform the configuration control and reporting functionality
of the CDN. Content providers register with the administra-
tive server 130 in order to access services and functionality of
the CDN. Accordingly, content providers are also referred to
as customers of the CDN. Once registered, content providers
can interface with the administrative server 130 to specify a
configuration, designate content to be offloaded to the CD for
delivery, and view performance reports. The administrative
server 130 also aggregates statistics data from each server of
the set of edge servers 110 and processes the statistics to
produce usage and performance reports. From these reports,
the content provider can better understand the demand for its
content, the performance provided by the CDN in delivering
the content provider’s content, and the need for capacity
reallocation, among other uses.

This distributed architecture enables the CDN to deliver
content from the network edge. As a result, content is deliv-
ered with less latency, packet loss, etc. for a majority of end
users than when that same content is delivered from more
distant origin servers of a content provider.

Some embodiments improve upon this distributed archi-
tecture by making it possible for the CDN edge servers to
optimize the content that they deliver prior to its delivery. In
so doing, the CDN realizes an additional first degree of con-
tent delivery performance gains by delivering optimized con-
tent that requires less bandwidth for delivery and/or fewer
processing resources for rendering than when delivering non-
optimized content.

Furthermore, some embodiments provide architectural
enhancements and interworking that sandboxes the optimi-
zation entirely at the network edge. By sandboxing content
optimization at the network edge, the CDN realizes an addi-
tional second degree of content delivery performance gains
by eliminating delays associated with retrieving the content
that is needed for optimization from outside the network
edge. Stated differently, the architectural enhancements and
interworking set forth herein exploits the distributed cache of
the various edge servers at a particular CDN PoP to provide an
expansive pool of cached (i) optimized content that can be
served from cache to satisfy subsequent requests for the same
optimized content without having to expend the processing
resources needed to reperform the optimizations and (ii) non-
optimized content that can be rapidly retrieved for optimiza-
tion from local cache as opposed to the greater latency that
would be introduced if the non-optimized content was
retrieved from an origin server that is located outside the
network edge. Moreover, the architectural enhancements and
interworking enable deterministic identification of whichever
edge server at a particular PoP caches the optimized and
non-optimized content.

FIG. 2 illustrates the architectural enhancements to a CDN
edge server that enables the sandboxed content optimization
in accordance with some embodiments. As shown, the
enhanced CDN edge server includes an optimization agent
210, one or more front-end agents 220, and one or more
back-end agents 230. Though the front-end agent 220 and the
back-end agent 230 may be referred to in the singular below,
it should be apparent that the reference can similarly be made
to apply to either a plurality of front-end agents or a plurality
of back-end agents that run on a particular enhanced CDN
edge server.

20

25

30

35

40

45

50

55

60

65

6

Each of the agents 210, 220, and 230 represent a module of
the CDN edge server, wherein the module includes software
elements that encode processes for execution by the hardware
components of the CDN edge server. Some of these hardware
components are enumerated with reference to FIG. 11 below.
These modules transform general computing resources of the
CDN edge server (e.g., processor, memory, non-transitory
computer-readable medium, etc.) to a specialized machine
that provides the sandboxed content optimization as dis-
closed herein. Each of the agents 210, 220, and 230 is iden-
tified by a unique Internet Protocol (IP) address or virtual IP
address (VIPs). The addressing allows the agents to intercom-
municate using standardized network protocols (e.g., 1P,
Transmission Control Protocol (TCP), User Datagram Proto-
col (UDP), etc.) or other proprietary network protocols.

The optimization agent 210 is encoded to perform various
content optimizations in order to best adapt content for net-
work transfer to an end user. The optimization agent 210
inspects requested content to identify the optimizations that it
can perform for each of the objects. Examples of the optimi-
zations that are supported by the optimization agent 210
include compression, resolution modification, domain shard-
ing, white space and comment removal, inlining, and asset
relocation. In some embodiments, the optimization agent 210
is an instance of the Apache mod_pagespeed module imple-
menting Google’s PageSpeed optimizations. This module
defines the algorithms for identifying the best practice opti-
mizations to apply to various content and the methods to
perform any one or more of the identified optimizations. It
should be apparent to one of ordinary skill that the optimiza-
tion agent 210 may implement other open source or propri-
etary content optimization modules or other supplementary
modules including security modules such as the mod_secu-
rity module.

In some embodiments, the optimization agent 210 provides
a cache to store content that has been optimized or store
non-optimized copies of content that are used to produce
various optimized versions of that content. Alternatively or
additionally, some embodiments utilize the optimization
agent 210 cache to store metadata that tracks what content has
already been optimized instead of actually storing the opti-
mized content. In some such embodiments, the optimization
agent 210 leverages the cache of the back-end agents 230 to
actually store the content.

While the optimizations performed by the optimization
agent 210 enable the CDN to achieve a first degree of content
delivery performance gains, a second degree of content deliv-
ery performance gains are realized based on the collective
interworking of one or more optimization agents, front-end
agents, and back-end agents of one or more enhanced edge
servers at any network edge or CDN PoP. The collective
interworking between the one or more optimization agents,
front-end agents, and back-end agents sandboxes content
optimization to occur wholly within the network edge hosting
those agents. As noted above, the interworking and resulting
sandboxed content optimization at the network edge elimi-
nates the latency and other performance penalties that would
result if content required for the content optimization was
retrieved from outside the network edge when performing the
optimizations.

The front-end agent 220 deterministically identifies a
back-end agent within the same network edge as the front-end
agent 220 that is tasked with caching requested content. In
some embodiments, the front-end agent 220 performs the
deterministic identification of the back-end agent by hashing
an identifier that is included within the request for that con-
tent. The identifier may include a Uniform Resource Locator

